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LOW-FREQUENCY ELECTRIC CIRCUITS
AND TRANSMISSION LINES

Transmission lines differ from the low-frequency
electric circuits in the following features

o Maximum physical dimension of a low-frequency electric
circuit is very much smaller than the operation wavelength , so the
propagation time for an electric signal is so short that it does not need
to be taken into account;

o Transmission lines are usually a considerable multiples of
wavelength and may even be many wavelengths long , so

PROPAGATION TIME for the electric signal along the line has to be
taken into account;

o The elements in a low- frequency electric circuit can be
described by lumped parameters so that currents flowing in lumped
circuit elements do not vary specially along the elements,and no
standing waves exist <LUMPED-PARAMETER CIRCUIT;

o A transmission line,on the other hand can be considered as
a DISTRIBUTED-PARAMETER CIRCUIT which can be described
by the circuit parameters distributed throughout its length.Except
matched conditions, STANDING WAVES exist in a transmission
line.In otherwords, voltages and currents can vary in magnitude and
phase over the length of the transmission line <>DISTRIBUTED -
PARAMETER CIRCUIT;



VOLTAGE AND CURRENT ON A TRANSMISSION-LINE
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Equivalent circuits of differential length dz s of the two-
conductor lossy and lossless transmission lines can be given by the
circuits in the Fig-2 and 3,respectively.
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Figure-2:Equivalent circuit for a lossy Fig2 .:Equivalent circuit for anideal

transmission line in the differential length transmission line in the differential length

A transmission line, in a differential length dz, can be described
by the following four parameters;

R, resistance per unit length in QQ/m
L , inductance per unit length in H/m
G ,conductance per unit length in S/m
C ,capacitance per unit length in F/m



where R and L are the series elements, G and C are the shunt
elements.R and G equals to zero in an ideal (lossless) transmission
line as shown in Fig. 3.

If the quantities V(z,t) and V(z+dz,t) denote the instantenous
voltages at z and z+dz positions of the line respectively ; the relation
betweeen these instantenous voltages can be given as follows:

V(z+dz,t):V(z,t)+a—de (1)
0z

Similary , if the quantities I(z,t) and I(z+dz,t) denote the instantenous
currents at z and z+dz respectively ; the relation betweeen these
instantenous currents can be expressed as follows:

ol
I[(z+dz) = I(z,t)+a—zdz 2)

Applying the Kirschhoff’s voltage law to the equivalent circuit of the
ideal (lossless) transmission line in Fig.3, we obtain ;

—V(z,t)+Ldz%+V(Z+dzat)=0 (3)

which leads to;

_V(z+dzt)-V(z,t) _ L dl(z,t)
dz ot )

in the limit Az -0, equation(4) becomes

AV (z.t) . dl(z,t)
Fra ()




Similarly, applying theKirschhoff’s current law to the ideal
transmission line in Figure-3,we have:

l(z.1)+ Cdz oV(z +dz,t)

+ I(Z + dZ, t) =0 (6)

Dividing dz and letting dz approach zero,equation (6) becomes,

- 0I(z,1) _C oV (z,t)
oz ot ™

So equations ( 6) and ( 7) give the relations between voltage and
current at the instant t and on location z of an ideal transmision line.

VOLTAGE AND CURRENT WAVES ON
AN IDEAL TRANSMISSION LINES

If the partial derivatives of the equations (5) and (7) with respect to
the time and space are taken respectively and then combined together
, one obtains ONE DIMENSIONAL CURRENT WAVE EQUATION:

8%V (z,1) 0%1(z,1)
- _L 7 (8)
0z0t ot
o’z L a%V(zn) ©9)
822 B 8‘[82
2 2 2 2
Lol _o%lz Y _ 0Nzt | 07Nz _, (10)

ot2 0z 0z ot2



Since similiar process can be repeated for the voltage on the
transmission line, so one can define ONE DIMENSIONAL WAVE

OPERATOR:

2 21 V(zY
O 1c? -0 imensi :
5 3 = One dimensional wave equation (11)
oz 0z” | 1(zt)
where v = % m/s is the phase velocity. (12)

If the u(z,t) denotes the solution of the one dimensional wave
equation in (11) which can be either the voltage or current wave , so
general expression of the u(z,t) can be given as follows:

ulzt)= u+{:-EJ n u‘{:i] (13)

Y ¥

wave component ih wave component in

+ Z-direction — z-direction

So the voltage waves can be expressed as follows:

V(z,t):VJrer(t—% ) + V_f_(t+%) (14)

In equation (14) , V" and V-~ denote amplitudes of the voltage waves
propagating with the phase velocity v in  +z and —z directions,
respectively.

Substituting (14) in the relations given by (5) and (7), one can write
the following expressions for the current waves:



(=TT (t-2) - T (t+2) (15)
A% A%

"= vCV"
I = vCV (16)

By using equations given by (16) , we have

_ 1
vt v _1 ] L

7z =2 X Y _ (v.C =|l—.Cc| = = @ 17

¢ I (v-¢) [LC j C (7

Zc is called the characteristic impedance of the line.

Using the equation (17) , we can express current waves in terms of
the voltage waves:

\'al z V' .z
I(z,t)= Zf*(t—;) = Z—Cf(t+;) (18)

VOLTAGE AND CURRENT WAVES ON A SEMI-INFINITE
LOSSLESS TRANSMISSION LINE

If there 1is no reflection wave,such as in the case of the semi-infinite
transmission line ,so the voltage and current waves have only single
component propagating in +z direction :



Vizt)= VTt —%)

+ (19)
I(Z,t):ZLf+ (t—%)
C

If we apply the Kirschhoff ‘s voltage law at the location of the z=0 ,
we have

Vg(t): V(0,t) + I(0, t)-Rg (20)
Using

A
£ (t)=1r7(0,t) (21)

Then the expression (20) becomes

V+
V. )=VTfT )+ —R _£7 (1) (22)
g z. ¢

So V'fT(t) is obtained from the equation (22) as

Z

vt ()= ﬁvg (t) (23)
g

So the voltage and current expressions at the t instant and on the z
location of the transmission line can be given as

Xe
Zc+R

V(z,t) = Vg (t— )
g \%
(24)



I(z,t):Z Jer Vg(t—\Z]—) (25)
C g

where v=

! and Z 2 L
JLC C"Vc

Using the equation (23), the equivalent circuit of a semi-infinite
transmision line at the z=0 location can be given as shown in
Figure 4.

Rg *

Figure-4 Vet y vy § Zc

MY

Loading effect of the
sami-infinite lossless
transmission line

The input impedance of a semi-infinite transmission line at the z=0
position , is equal to the characteristic impedance of the line :

Zyw = L (26)

TERMINATED LINE : RESISTIVE TERMINATION
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Figure-5 Resistively Terminated
Transmission Line
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Boundary conditions at the z=0 location are as follows:

V({,t)=V, =1, R (27)

1(¢,t)=1, (28)

(D If Re=Z, V(¢,t)=V, =1(¢,t)Z. is satisfied by only V(f,t)
and 1*(s,t) waves = The energy carried by the incident wave is
completely absorbed by the load . = V ~(¢,t)= 0

(2) R, #Z. = 1in order that the boundary conditions given by (27) and

(28) to be satisfied the reflected wave components have to exist. Now
the generation of the reflected wave will be formulated in terms of the
source voltage waveform. Firstly the voltage wave incident across the
load can be expressed in terms of the the source voltage waveform as

Ui(z,t)=Z—CRUg(t_ﬁ)=v+og(t_£j (29)

Zc+R, L L
and the current through the load is given by

n(at):ioi@,t) (30)

Since there exists the only single wave component until the waves
come to the load , so we can express the reflected voltage wave
component as

Ur(z,t):V_ug(t—é— E—zj
L

L

(1)

Ur(z,t): V_Ug(t + E—%j
LV L

11



The reflected voltage and current waves of the load can be given as

0 (6.1)= Vo, (t—;j G- Y, (1-)

L
(32)

The boundary conditionis v, = U(f,t)= I(f,t)RL and substituting
the incident and reflected wave expressions into the boundary
condition, we have

UL(Z,t) = ZL(VJr — V_)Ug(t _éjRL
C

UL(Z,t):(V++V_)Ug(t—£) 33)
L

So using (33), the reflection coefficient can be defined as

A - R - 7
r,=——=->1 c (34)
v * R, + Z,

Properties :
o I[,<1

R =Zc <V'=0 (Termination by the Characteristic imp. )

R=0 < I, =-1<V=-V'  (Short-circuit Termination)
e Ri=>w <1, =1V =V’ (Open-circuit Termination)

v(z,t) , 1(z,t) at the location of z=0 should satisfy the boundary
condition

12
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If we make vy(t) =0 ,atz=0 and applying the Kirschhoff

: R, -7
Voltage and Current Laws, we obtain 1, = = e " ZC . So , for Ry#
C

g

Zc .there is a reflected wave travelling towards the load too.

MULTIPLE - REFLECTION THEORY
According to this theory , v(z,t) can be expressed as the convergent

series of the incident wave and its resulted reflected wave
components:

v(z,t) = V+Ug(t —Ej + FL2V+Ug( - —%jU(t ~S)+

L L D)
I, Vo (t—z—%)U(t——)
L L (35)
|8 VAR (t+£—£)U( ——)
L L
| PR VARS (t—z—%jU(t——)
L L

where  U(t —é) is the Unit Step function which can be expressed

as

13



Z
I >t>Z
ut-4=1"7""% (36)
18]

0 — otherwise

Figure 7

=05 T=-0.5

I(0,t)
—
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0 ——!

=0 z =

Definition equations of the termination can be written as:

Q.()=C.V.(t) or Ic(t)zc¥ (37)

14



REFLECTION DIAGRAMS

The preceding step-by-step construction and calculation
procedure of the voltage and current at a particular time and
location on a transmission line with an arbitrary resistive
termination tends to be tedious and difficult to visualize since one
has to consider so many reflected waves. In such cases the
graphical construction of a reflection diagram will be very helpful.
Firstly let us construct a voltage reflection diagram. A reflection
diagram plots the time elapsed after a change in circuit conditions
versus the distance z from the source end.

The voltage reflection diagram of the circuitin the Fig.1 is
given in the Fig.2.

Figure-1

15



T Vi
Ps

4T | %

Figure-2

v

It starts with a wave V| at t=0 travelling from the source end
(z=0) in the +z direction with a velocity u.This wave is
represented by the directed straight line marked V," from the
origin. This line has a positive slope equal to 1/u. When the V,"
wave reaches the load at z=I, a reflected wave V,;=TV, is created
if Ri#ZRy. The V, wave travels in the —z direction and is
represented by the directed line marked I''V," with a negative
slope equal to —1/u.

The V, wave returns to the source end at instant t=2T and
gives rise to another reflected wave V2+=FgV1'=FgFLV1+,
which is represented by a second directed line with a positive
slope. This process continues back and forth infinitely. The
voltage reflection diagram can be used conveniently to determine
the voltage distribution along the transmission line at a given
time as well as the variation of the voltage as a function of time at
an arbitrary point on the line.

16



The voltage distribution along the line at =t, (37<t,<4T).
1. Mark t; on the vertical t-axis of the voltage reflection
diagram.

2. Draw a horizontal line from 14, intersecting the directed line
marked I’gI’LzVIJr at P4.(All directed lines above P, are
irrelevant to our problem because they pertain to t>t,.)

3. Draw a vertical line through P, intersecting the horizontal
z-axis at z;. In the range of 0<z<z,, the voltage has a value
equal to V=V, (1+I'+II'[); and in the range of z,<z<l
the voltage is equal to V{ +V;+V, +V,
=V1+(1+FL+FgFL+FgFL2). So there is a voltage discontinuity
equal to FgFL2V1+ at z=z, position.

4. The voltage distribution along the line at t=t,, V(z,t4), is then as
shown in that diagram plotted for R;=3R, <I'1=1/2 and R;=2R,

=W 1/3.
V(Zat4)
Vi A+ AT D AT ) i
V(T

V(4T [

V(14T t

A\
| >
0 VA l VA
Figure-3

finding the variation of the voltage as the function of time at the point
7=7,.
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1. Draw a vertical line at z;, intersecting the directed lines at points
P{,P,,P5,P4,Ps, and so on.(There would be an infinite number of
such intersection points if R #R, and R,#R,as there would be
an infinite number of directed lines if I't 20 and I'y£0)

2. From these intersection points, draw horizontal lines intersecting
vertical t-axis at ty,t,,t3t4,ts and so on. These are the instants at
which a new voltage wave arrives and abruptly changes the
voltage at z=z;

3. The graph of V(z,,t) is plotted in this diagram for I';=1/2 and
I'y=1/3. When t goes to the infinity , the voltage at z, (and at all
other points along the lossless line) will assume the value 3V/5,
as given in equation:

V:V1++V1-+V2++V2-+V3++V 3-+ ............
=V (LT AT L AT L AT g T T T L)

=V T L AT T+ AT (AT D AT T )]

! r,
=v,*|\1-r,r ) l1-1,L,
1+17,
=V,"|1-T,T,

Similar to the voltage reflection diagram in figure-2 a current
reflection diagram for the transmission line circuit of figure-1 can be
constructed. This is shown in figure-4.

18



3T

Figure-4

v

Here we draw directed lines representing current waves . The essential
difference between the voltage and current reflection diagrams is in
the negative sign associated with the current waves traveling in the —z
direction on account of this equation:

The current reflection diagram can be used to determine the current
distribution along the transmission line at a given time as well as the
variation of the current as a function of time at a particular point on
the line, following the same procedures outline previously for voltage.

For example we can determine the current at z=z, by drawing a
vertical line z; in figure-4,intersecting the directed lines at points
P1,P»,P3,P4 and so on, and by finding the corresponding times ty,t,,t5,t4
, and so on, as before. Figure-5 as a plot of 1(z;,t)versus t, which
accompanies the V(z,t) graph in figure-6.

19
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We see that they are quite dissimilar. The current along the line
oscillates around the steady-state value of Vy/5R, as seen at equation:

R R
-\ 1-T,I R,

20



I _E V1+ _VO
5\ R, ) 5R,

with successively smaller discontinuous jumps at ty,t,,t3,t4,etc. There
are two special cases.

1. When R; =R, (matched load, I';=0), the voltage and current
reflection diagrams will each have only a single directed line,
existing in the interval 0<t<T, irrespective of what R, is.

2. When R,=R, (matched source I';=0) and R;#R,, the voltage
and current reflection diagrams will each have only two
directed lines, existing in the intervals 0<t<T and T<t<2T,

In both cases the determination of the transient behavior on the
transmission line is much simplified.

LOSSY TRANSMISSION LINES

1(z,t) Liz 1z + &zt
—— NN A » 2 n
+ Bdz +
L(z, t Gdz Cdz vz + Az t)
. . .

— g —r

Relations between V(z,t) ,V(z+dz,t) and I(zt), [(z+dz,t) can be
written as follows:

1(z+Az;t) =1(z,t) + ﬁdz,
0z

38
U(Z+Az;t):u(z,t)+%dz 9

21



The Kirschhoff’s voltage law can be applied to the equivalent circuit
of the Lossy transmission line :

v(z,t) — RAzi(z,t) - LAz

oz, _ v(z+ Az,t)=0
ot

By dividing with Az,we have

_v(z+ Az, t) - v(z,t) _RAzi(z.1) + L 0i(z,t)
Az ot

When Az - o we obtain the derivatives of the voltage and currnent
functions,

ov(z;t o oi(z;t
—%=RI(Z,'[)+L% (39)

In similiar manner , from the application of the Kirschhoff curent law ,
we have;

: ou(z+Az;t) .

1(z;t) —GAzv(z + Az;t) — CAz (z Y —1(z+Az;t) =0

If we divide by Az , when Az —0 the limit is

MZY _ Go(zt)+ ¢ &Y (40)
0z ot

(39) and (40) are the general transmission line equations <>
Telegrapher’s Equations .

22



CONTINUOUS SINUSOIDAL CASE

For the harmonic — time variation , the partial differential equations in
(39)and (40) become the ordinary differential equations:

A

o(zi)= |V (2)e ] 41
Im (41)

i(z;t)iif1 ‘[I(z)ej“”] (42)

If we substitute (41) and (42) into (39) and (40)

V(2 _ (R 5 joL)I(z) (43)
dz
di () (44)

= (G + joC)V(z)
dz

From (43) and (44) , we have one - dimensional wave equation for
both the voltage and current:

2 \Y%
dz* I(z) (45)
%r_/
one- dimensiondwaveoperator
Here Y = 0.+ jB = /(R + joL)(G + joC) (46)

Analogous to the attenuation constant within the free lossy
dielectric:(p, €. )

. . .0
Y = JWJME =] M(S—Jg

23



. O :
where €, =¢—]— & attenuation constant (47)
®

B= Im{y}rad/m <phase constant (48)

The solutions of (45) give the phasors of V(z) and I(z):

V(z)=V,'e""+Vje'” (49.1)

V(2)=V'(2) + V'(z) (49.2)
A -

V0+ :‘V-i- (O)‘CJ(PO (493)

A o Lo
V(@) =V (0)e e D v (0)e® el B0 494
I(z) has the same properties as V(z)

[(2)=T'(2) - I(2) (50)

The relation between V(z),I(z) waves can be found by substituting
(49) and (50) in (43) and (44);

éW(Z)_LV*(Z)_R+jO)L:>R+j0)L_ Y
') T'® v Y G+joC

; 51
Z, = R-I-J(DLQ (51
G+ joC

Zy

24



IMPORTANT SPECIAL CASES
(1) LOSSLESS LINE < (R=0, G=0)
(a) PROPAGATION CONSTANT:

y=o+JB=JWLC o=0 = zero attenuation and
B=JwvLC = B is the lineer function of the  ; (52)

o 1
)Y, B «/Tj =CONET, - (all the frequency combinations of a

signal packet will have the same u, speed along the line);

(¢c) CHARACTERISTIC IMPEDANCE :

Zo =R, + X, :\EQ,RO :\/%Q (53)

(2) LOWLOSS LINE & (R<<oL , G<<®C)

(a) PROPAGATION CONSTANT : y

R 1/2 G 1/2
v=o+IB JO)\/E( Jij ( Jij

From the binomial series expansion using for

R G
— << 1], — << 1
oL o C

[\f \D or (R+GZij/m — (all the

frequency combinations of a signal packet will have the same
amount of attenuation along the line);

B=ovLC rad/m = f is the lineer function of the ® ; (54)

25



(b) U, = 2 - %) = (all the frequency combinations of a signal

"B

packet will have the same u, speed along the line);

R 1/2 G 1/2
— _ L1+ 1+
(€) Zi=Ro+JXy \/Z( Jo)Lj ( Jmcj

. 1 . I I — << 1, — << 1.
From the binomial series expansion using for oL —C :
\f \F (_ __) 55
o= C2o (55)
R G
(3)  DISTORTIONLESS LINES & =

(a) PROPAGATION CONSTANT:

1/2 RC C :
—o+ip=(R + joL) (J C+ Lj \/;(R-FJO)L)

C
= R,/ = independent of o , B = ®VLC =lineer function
of o ; (56)

Q)
b)U, = B Jic = independent of ®

(c) CHARACTERISTIC IMPEDANCE:

P ];{(;_&:\/E;ROZ\/E;XOZO 57
Zop—TpT]X0= L+J(0C C C ( )

26



HOMEWORK

7¢=50 Q2 ; DISTORTIONLESS LINE ; 0=0.01 dB/m ; C=0.1 pF/m
are .given

(a) The other line distributed parameters and phase velocity are
required ;( Result :R(Q2/m) = 0.057 Q/m ; L(H/m) = 0.25 uH/m ;
G(uS/m) = 2.28 uS/m and U,=2x 10° m/sn )

(b) At the distances of 1;,=1 km , 1,= 5 km ; find out attenuations as
the ratio ?

tint : 0=Rey} =Re\/R+JoD)G+J00)| (Np/m

oo FORMULA USING THE POWER RELATIONS ON A
REFLECTIONLESS LINE

For infinite length line ,or finite line terminated by z, , the voltage
,current and power waves can be expressed as;

V(Z)==Voe'(°°+jﬁ)z

I(z) = &e—(OHJB)Z

(58)
0
1 ; Vo
P(z) = —Re GJ(z)I(z )): 2R e ?* (59)
2 1Z|
From the law of energy conservation,one can write
OP(z) Py (z)
- =P, =2aP o = Np /m
. L =2aP(z) = 2P(2) p (60)

27



Calculating Py(z) by using the lossy equivalent circuit,we have

P, (z) = %hl(z)‘zR + \V(z)\zG]

V.2
P (2)= . 5
217,

(R + G\Zo\z)e‘z"‘Z 61)

Substituting  (58),(59),(60) ,one obtains;

1 ( 2)
o = R + G|Z
2R, ‘ 0‘ np/m (62)

For low loss line , using ZO—RO—
1
= et ( ] B

T R G
Distortionless line Z¢=Ry= \/g, using IZE

oo lr E(HG_L):ale ﬁ _R o
2 VLU RC 2 VL R,

GENERAL CASE : A TRANSMISSION LINE TERMINATED
BY AN ARBITRARY IMPEDANCE

L
—
[ [ I
ZG + + L
. o Vi, Lot p Vi an
Lﬂ)
= z N
= : d=0

d=l-z
28



V()= V' (2) +V (z)=V, e+ Ve (65)

V(Z) _ ‘VO+ e—OLZe_j(BZ—(P0+) 4 ‘VO—‘G—OLZej(Bz-i-(pO_) (66)
Vi
0=I"()~T @)= vom) |0 gy
\Zo\ 7
(67)

REFLECTION COEFFICIENT FUNCTION

['(z) ~The reflected component of voltage (current)
The coming component of voltage (current) using this definition , let

us find out I'(z) for (z=v¢):

A VO_CYK VO—CZ’YK
I =I'(¢) = o n (68)
VO C VO
and I'(z) function can be written as
I(z) = V°+ ik (69)
Vo

so I'(z) can be expressed in terms of I using (68):
[z)=I; e 2™ oId)=I; ¢ 2" (70)

r(d) =T le™**o. —28d

29



['@)

Ifal} is given, we can find out I'(d) for lossless line as shown:

Im{I'}

—

sl
il Lo

! /ﬂ)n Re{I’}

| < |
‘ rd,
\\ )
T

¢
B
—_— -

~2ad
(1) Take a=0 (lossless line) [{d) :‘FL‘G

I_
N Z (TL) I::I
g .
_V(d)
HO= V*(d)

IT(d)| = [I'| =CIRCLE

¢, (d)=¢,—2Bd

o-2Bd (7

(72)

(73)

(74)

30



(2) a#0, |[I(d)= T je** = (SPIRAL)

¢, (d)=¢, —2pd (75)

r- plane

I

Z>0

N/

So if you go towards the source from the load ,all the I'(d) take place
on the spital starting from the I'y ending to the I'(¢).

Let’s find V(z) and 1(z) using I'(z):
V(2)=V,'e " (1+T1(2))=V, e *(+T e ) (36

V, e " V, e "
I(z) = OZ—(l ~T(z))=—2—"—
0 0

(1-T e 27 (77)

Let us write the boundary condition for Z = ¢

VL =V() =V, e (1+1) (78)

+ -y 79

=1 = -1y "
0

ZLiVL:>VL=ZL.IL (80)
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Substitute (78) and (79) at (80);

I, =

ZL_ZO

Z, +7,

For Z;=Z, T =0T(Z) <V (Z)=1(Z)=0

=<1
Z1=0=>11=-1=v () =-V*(©)
Zi—o I'i=>1 v ()=-v () (R>Ry)

R, - R
_ r =2t =R
.IFZL RL:> L RL+R0
X
arctg k
r _ JX L R 0 _ - R 0
o /=]X;=> *t IX + R X |
L 0 arctg
- R,
X {Zy}
Py
Qr=arctgX,
R/ R,
! - ZI

(81)
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z=0

F1aH1. FaaHa. Uy

™ T
z=0
=0

\/l’Tl \/Escl_gll J j 02—82(1 Jc:;j

roE0) _m,—m,
E.(0) m,+nm,

(82)

Standing waves pattern< |[v(z)| -

0=0<> lossless line using v(z)=v, eP(1+I'(z))

\\//Lf) =1+ (@) =1+, | =[[[; |cos:2Bd+q, )+ (I |sinc-2Pd+ g, |
0
(83)
L : . V(z)
Finding the maximums and minimums of v |
M _ {1 [cose2pd+ g, ))? +[1 [ sin* (-2pd +,) 84)
0
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V(d)
.

=+ 2|7, |cos(~2Bd + 9, ) +|T, | (85)

-2Bdaxt o= n2I1 n=0%1, £2,..............

Vid )
v,

max :1+‘FL‘

Ao
d_=nZ+1)

V@), =|Vo'

1+|C.) (87)

2Bdmint o= 2n+1II n=0%1, £2,..............
_ Ao
dmin = —(21’14—1)5 +ﬁ}\, (88)

Between two maxima or minima :A/2 ;
Two maxima and minima : A/4

VI, =V, ja-Ir) (89)
V +
‘I(d i )‘ = ZOO (1 - ‘TL D (90)
f |V max _ 1 + F L
VSWR = |V - = T .7 ] (91)
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r o424 _z-1 Z
L ZL+ZO ZL+1 '

Here

GRAPHICAL APPROACH

0=0 < lossless line

V(z)
v,

=[1+T(2)| = ‘1 + T e P02

0r (D)=2B(L—2)+ ¢,

Or oo (Z)=n27...n = 0,+1,+2..

V(z)

=1+ T (z)

. [-Diizlemi

11z 1Fe) Re{l)

(92)

(93)

(94)

(95)
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(PFmaX (Z) :(211 + 1)7'C,n = O, +1, +2.. (96)

V(z)

=1-T
Vo | 1-T(2) (97)
HOMEWORK:

Find the maximum and minimum positions and values of |I(z)| - z

A A2 -1y
or@=o,+-2pd =7 7r=[fo (98)

For Special Terminations standing waves pattern and VSWR:
(1)Open-circuited termination: Z1 —>0=I =1= 1[00

STAMDING - WAYES FATTERN

N T
0 — O
Z 1
| | I
Vg | AloA
L | .
z=[klfil:J z f_l
+7 Ij
nA A
(Pr(d) max_ +2Bd:Il27T, max:77dmaxl :O’dmaXZ :E’dma)é :7\' (99)
2n+1)A A 3L
(pF (d) min— +ZBdmin = (2n+1)7[, dmin = ( 2 ) ’dminl :Z,dman _Z (100)
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1+17

VSWR = - ‘FL — | .FOR OPEN CIRCUIT TERMINATED
L
V(Z+) = \/2 + 2 cos 2p3d
\/O

STAMDING - WAYES FATTERN

PN
[ : L}

HOMEWORKS:

Find the standing waves pattern and VSWR for the above terminations

1. v2)|=v|  z=zo
2. Z;—0(short circuit)

3. 21:R1+jX1
4. Zl_>0 — 1_11:0;\78\7\71{:1;|\/(Z)|rnax:|v(z)min
5. leRl
_ V()| 1+T, VSWR-1
6. 23X VIMRIRG) I, T T VsWReD
) O— (%) Z=R,
Terminating line with pure
§ Re#Zy rezistance
I o _
Z, P oRioZ,
R, +7Z,
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DR>Z, =TI =) L0°

2) Ri<Zy =T :|r1| LH
A
¢or(d)=0, +-2pd

A
D) or(d=—2Bd  |Voul=2, [Viuin|=2, VSWR=?

A A
2) R<Zy, o (d)=I1-2pd II=I1-2B3d, ,d. .. =0
Viinl=? ,VSWR=?

POWER FLOW ALONG THE TERMINATED LINE

ZI} + i
Vs Zpap W z
Vs i . L 1
LDJ'
= T _
= d=0
d=l-z

The net power P(z) at a z-position of the line
P(z)=Re{V(2)I (z)} (101)

where V(2)=V'(z)(14I'(2)) and 1(2) = Y Z(Z) (1-I'(z))

V(2)=V'(2)e™" (102)

P(2) = Re{w @)1+ r(z»(vz#))a T (z))} (for low loss line)

0
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Vi

0

P(z) = Re{

Z—:)‘a r(zf)}

P(z) = Re{

2
V' (2)
ZO

P+(Z)iRe{V+(Z)(I+(Z))*}=

P (2) i—‘v_ (Z)‘

0

=|[(2)"P*(2)

P(z)=P"(2) + P (2)

P(z) =P* (2)(1-[(z)|)

The net power at the input of the line 1s

B, =Pull-[L, [

where

b+ Voo v
v ZO B ZO

(=02 )~T"(2) +T(z) =T +IT, + T +1JT,

(103.1)

(103.2)

(103.3)

(104)

(105)
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is the power of the wave that comes to the input of the line. The net

power that goes into the load is
+ 2

P =P (1—\FL\ )

where

2 2al

2 2
+ + +
‘VL ‘VO e ‘ ‘VO e

P = —
- ZO ZO ZO

is the power of the wave that comes to the load and may also be

written as
+ + 2l
P, =P e

m

We can generalize Eq.(108)

P*(2)=P,"¢**

G m

S 0—

(106)

(107)

(108)

(109)
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From Kirschhoff’s voltage law

VG — Vin + IinZG (110)

vV, =VJ(1+Fm)+\Z]—°ZG(1—Fm) (111)
0

112

1_‘in = 1—‘Le_zﬂ ( )

+
Vo is the sum of all the voltage wave components traveling in the +z
direction at the z=0 location

V" =V(0) (113)

For the reflected wave we consider the reflection coefficient at the
source end

_ ZG _ZO
© Zo+Z, (114)

Solving for Zg Eq. (114) becomes

1+,
Z.=Z G
G O[l—rej (115)
At the time t=0"
" V.7
V + — G 0
ZG [] ZO 0 ZG 4 Z() (116)
Vg
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+
Second V  wave

V.Z
Vy =T Tze™ =2
Z,+7, (117)
Third V()Jr wave
V.Z
+_ 290\2 V6o
Vo = I'ge™) Z.+7, (118)
If we go on like that, we have
+ Ayt Voo ~2y¢ —2y0\2
Vi EV 0= G[1+rGrLe ™Y .

For ‘FG re™” ‘<1 the series in Eq. (119) converges.

V.7, & . V.Z 1
V+O: G0 Fre—%/f]: G%0
©) Z,+7, j_zo( olie™) Zy+Z; 1-T T e (120)
where
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1+I; 2
ZO +ZG:ZO +ZO I_FG :ZOE (121)
G

G

So we obtain

. (1-T'5)Vg
V*(0)=
©) 2(1-T, T e ™) (122)
2 2
V 1-T
P+(Z):‘ G‘ G ‘ 6_202

47, |1-T e (123)

P*(2) is the total power of waves traveling in the + z direction. P,
is the maximum power of load and defined as

p A Vel
A 4R (124)
VG 1s the rms value and RG — ERe{ZG}
Z —
Vqu I:;]ZL ZL :ZG*
+_ 1_‘FG‘2
in A ‘1_1_,GFm 2 (125)

For a lossy line;
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P, =P (1— r. ) ! (ffrxlr ; [) (126)
b = Pi;e_zaz(l_‘ L‘ ) (1 FFFX1e2ﬂ )

The net power at the z location,

P(z)=P" (z)(l - \F(Z)\z)

P. —P, = giveslossy factor.

For a lossless line;

(9 e

\1 r.r e‘ﬂﬁz\

SPECIAL CASES

Line 1s driven by a matched source

L =2,
SO
T, =0

Eq. (126) becomes
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P

S+
I
o
>
I

47

P, =P, (1—\rin\2)

(128)
SR BT
if I[;=0,I, =0anda=0
P =P, =P, (129)
REFLECTION LOSS
Lg =10-10 i_i 4B s cquation of reflection loss.

P :‘F‘z -P” thus ;

1
LR =10 log m—2 dB is obtained.
2ad
‘F‘ = ‘FL‘ € is unity of @ - d is Neper.
In this case between line of input and load reflection loss is derived

that

45



I: Ly load loss due to the load reflection

I1 : loss term due to the attenuation of line

LRIIl — LRload‘l‘ 2 . 8,686' a- E

EXAMPLE : A 500 MHz generator with V5 =20 V., and internal
resistance Zg =100 Q 1s connected to a Z, =100 Q transmission line
that is /=4 m long and terminated in a Z; =150 Q load. Find P;,

a) For =0 dB/m and delivered power to load Py

b) Repeat a) for a=0,5 dB/m

SOLUTION :

Source

Vol 20?

= =1W
4R;  4x10?

Py

P,=1W f=500 MHz since Zg = Z7;=100 Q so I'=0 source is
matched to the transmission line.

r - Z, -7, _ 150—1002
Load "L 7 17, 250

0,2
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" I ’ ) where ;
P' =P, and T, =T, e?* =T so that

P =1- (1 —-0,2° ): 0,96 W is obtained.

m

P, :Pi:;'(_

(a) For the lossless line a=0 is given before , so that

PL :Pinzl \YY

(b) For the lossy line a=0,5 dB/m

0,5
= 6920,23 Np/m and 20[420,46Np

(04
’

P =P/ - (1 . ‘Fin‘z) where ;
P =P, and| T, |=|I\ [e™*" =0,2¢"% =0,126
P, =1-(1-022}=0,984 Wis found,

P =P/e*” (1 —\FL\2)=1.e'°’46(1 —0,22):0,605 W

P =P —P, =0,984-0,605=0379 W

loss

Reflection loss Lr =Lryoaqt8,696-f
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UTILIZATION OF A TRANSMISSION LINE
AS A CIRCUIT COMPONENT

INPUT IMPEDANCE OF A TRANSMISSION LINE ( Zi, )

Pl E [
e

VO)  Zo.o.p 1z,
Zi 0 = pt
Definition :

A Vo V (0)
Zin = -

| 1 (0)

7 V'(1+Ty) 1+ T

1 + Fin
Zin—zo(l_r_ )

m

_ 4. =74

if Q=0 , Z,=R, and substituting 1_‘L o
o 21+ 2y

we can write ;
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1 +
ZL+ZO
_Z | Z, - Z, - 2B
ZL+ZO
7 s 7. Z1 +jZotg(Br) )
n(BLEL=TN 70+ 2 te(B1) 130

. Zin(BE,ZL) has the period of either & = B¢ + N7z or

2 A
¢{=/{+n 5 .In the other words Zin is repaeted by n ?

intervals.
Line impedances at the maxima and minima:

. (1 + |Fin |) .
o  Ziwax =%0 1 _ |Fin| =40 VSWR

(resistive)

1 + |Fin |) Z,
1 - T |” 7

e Limin = o (
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IMPORTANT TERMINATIONS

1- OPEN CIRCUIT TERMINATION (I =1, 21 )

Substituting ZL—» » in equation (1), then we have

( Z1 +)Zotg(BY)
Zo+)Z1tg(Bl)

_z, ( L—)

Z, .
~0 4 gt /
Z, jtg (BY4)

Zin(ﬂf )IZO

Zin = jxin = - _]ZO COt( Bf)

(131)

O _ Ovw
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Zy -~ jZg cot( B 1)

-

v
)

N/4 N2 314
| | |

In case of open circuit termination Z;, is purely reactive,

Z, may be capacitive or inductive depending on 0 — ﬂf

A
0< f < 4_ — Z in capacitive

A A
= A +n 5 — Zin SERIES resonance
A g }”_ /
4_ < < 9 — in inductive

A
2_ ., Z in PARALEL resonance



VA in =— JZycot(Bl) wvaries with respect to the frequency
because of [.

o If IBg <<1 then tg(ﬁg) Eﬂg and Zin becomes

Zo -2 — j‘E 1

Bf “wALC ¢ a)CL

L
oCL

° At microwave frequencies it is not possible to obtain

ZL — OO0 because of the coupling to the nearby objects and
radiation.

2- SHORT CIRCUIT TERMINATION (I'y =-1,Z =0)

7 (ZL+iZote (BO)
W PE=t7 0+ JZ g (B L)

-+ JZotg (BL)

)

L =]Xin=12otg(B1)
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A4

A2 304 A

v

in  short circuit

inductive

PARALEL resonance

capacitive

SERIES resonance
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3-QUARTER WAVE LINE TRANSFORMATOR

2
i = 2 0 (132)
n Z L
e  Quarter wave line transformator can be used as an impedance
invertor.
e 0
ZO aB —— ZL
Ft O @)
Zm Z - (211-1) j_
) ZL — s o0 , Z in = O
1 ZL —_>O ) Zin B Cx}
2 2
Z 7 Lo Lo
° [L=Jo L , in—j(DL = (DL
. Zp ! . 2
L_ja)C . Ly=-10C Z,
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Impedance matching in case of ZL - R L ¢

2

7
yA—
Z 1

Zy - Zy_JZyRy

4-HALF WAVE LINE TRANSFORMATOR

2 A
N f =ni n=0, 1, 2,..... ﬂ€=n752nﬂ'
L= ZL (133) repeated by n 7 intervals.

EXAMPLE : QUARTER WAVE TRANSFORMATOR IN
IMPEDANCE MATCHING

£/4

55



The equivalent of the circuit is:

If I', =0, then all the power of the incident wave is transferred to the

load, so we can write

2
‘ P" =0 (no reflected power)

FL‘:O P~ =‘FL

I''=0;
Z"*
To obtain FL = 0 we must have R; = ZO = Zy'= \/ZO'RL

where R and Z() are given.

General Block Diagram of The Impedance Matching

MAIN LINE
Q @ @) O
Empedance
/\/\’—" matching /\_/\/->
—> . .
circuit Ry

—>

Q ® O O
Z Ry
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WORKED EXAMPLES :

EXAMPLE 1: For an matched load in any position ; find :
(a) V(Zat) ’ I(Zat) (b) VL(t) ’ IL(t) (C) P+(Z) > P (Z) ’ P (Z)

(d) I'., Standing Wave Pattern ,VSWR

10
Z, 4m
Q O
| Zy =500

o a=0

u, =25.10"m/sn

=0 7=t

Solution: As we have a matched load we must have a Z; equal to
Z0;

71 -7
2= Lo L7, vz, "
vswr= L

V)=V (@) +V (2) =V'(2) 1+ 1(2)=V'(2
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Vg

+ _ Z _ - Jﬂz ﬂ: _j
V7 (z) Zo+Za 0=03¢€ 5 0,294 €
8
B - w 27Z-X108:O’87Z.
u, 2,5xI10
—1(0,87)z
V*(2)=0,294 € 10587
V' (2)
="y (-T(®)
0
V' (2)

as we have ['(Z)=0then I'(z)= 7
0

0,294 e—j(0,87r)z (0,87)2

2=1@) = 55 ~ 583 10> €

V () =0204 cosQrx10’—327)

VvV, (z)

(#)=—5-== 58810 g 1327

V (t)= 5,88x107 cos(27 x10° —3,27)

c)

o]

as we have I L = 0 then
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V(z)
V,

- V()| = Vo

* If the source is matched to the line =ZG=2y ;15=0
the wave carries all the available power of the source;
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EXAMPLE 2: Vg=100V , Zg=500 ,f=10°, Ry=500
Z;=25+)25 ve 1=3,6 m are given. Find;
a)V(z) b)Vi ¢)V d)VSWR e) P =?

Solution: As we have Z, = Z¢ so the source is matched to the line in
this case we have [’ ¢ =0.

v=-Vo e 7 (1.Te  rp-ne

Vg _ _j2 Ad
_ Z~ e  1P? r e 127
V(2) Zo+ 7 G. (1+1 )
where
Vi
V'
0 =7, 425 %6
Zy, -7y _25+j25-50 _ —25+ j25
“TZ +Zy 25+ j25+50 75 + j25
_35e—j135
= 79 @ 118.43
j116 ,57

[, =044€
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50 27
=100(—) =50 = —
Vo (100) )54 3

_i27, _j(47”z—0,128)7z
V(2)=50 € (1+0,44 € )

j(~0,128
b) Vi=V(0)=350(1+0,44 e ! “)

¢) Vi=V.(3,6)

1. 1+ 0,446 ,:11,57
1-T 1 —0,44 e

d) VSWR =

e)P= = 7, P=0,119 W



SMITH CHART

Transmission-line calculations such as the determination of input
impedance, reflection coefficient and load impedance often involve
tedious manipulations of complex numbers. This tedium can be
alleviated by using a graphical methot of solution. The best known
and most widely used graphical chart is the Smith chart devised
by P.H. Smith in 1939. Smith chart is a graphical plot of normalized
resistance and reactance functions in the reflection -coefficient plane.
In order to understand how the Smith chart for a lossless transmission
line 1s constructed, let us examine the voltage reflection coefficient of
the load impedance.

ZL-Ry
Zy - R0

I'= = [ (133)

Let the load impedance be normalized with respect to the
characteristic impedance of the line.

Zr R .
7p =—=="L 47 L=r+ix

Ry Ry R (134

where and are the normalized resistance and normalized reactance
respectively. Equation (133) can be rewritten as

z; -1
71 +1 (135)

where ,and are the real and imaginary parts of the voltage reflection
coefficient respectively. The inverse relation of Equation (135) is

P=T, +iF; =

14T 1[0
71, = 1-T - 1—‘HejQr (136)

or
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4 i D L
(1-I) -k 57

Multiplying both the numerator and the denumerator of Equation
(137) by the complex conjugate of the denumerator, and separating
the real and imaginary parts, we obtain

-T2

r=
(1—1})2 +Fi2 (138)

and
o2

1

X =
2 2
(1_Fr) +Fi

(139)

If equation (138) is plotted in the plane for a given value of, the
resulting graph is the locus for this. The locus can be recognized when
the equation is rearranged as

T 2 2 | 2
r—— - =|—
(r 1+rj T (1+rj (140)

It is the equation for a circle having a radius of 1/(1+r) and centered at
(r/(1+1) ,0). Different values of r yield circles of different positions
in the reflection coefficient plane. A family of these circles are
shown in figure 1. Since only that part of graph lying within the unit
circle on the plane is meaningful; everything the outside can be
disregarded.
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1.0

Fig:1 Smith chart with the rectangular coordinates

Several salient properties of the r-circles are noted as follows:

1. The centers of all r-circles lie on the I', — axis.

2. The r = 0 circle, having a unity radius and centered at the origin,
is the largest.

3. The r-circles become progressively smaller as r increases from 0
toward oo ,
ending atthe (I, =1, T'; =0) point.

4. All r-circles pass through the (I', =1, I'; =0) point.

Similarly , (139) may be rearranged as

(T,-1)*+ (T, —Ux Y= (1) (141)
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This is the equation for a circles having radius 1/|x| and centered at
I =1 and I;=1/x.
Different values of X yield circles of different radii with centers at
different position on the I', =1 line. A family of the portions
if x-circles lying inside the |I'| = 1 boundary are shown in dashed lines
in Fig 1. The following is a list of several salient properties of the x-
circles.

1. The centers of all X-circles lie on the I, =1 line: those for X > 0
( inductive reactance ) lie above the I';,— axis and those for X< 0
( capacitive reactance ) lie below the I',— axis.

. The X = o circle becomes the I',— axis.

. The x-circles become progressively smaller as |x| increases from
0 toward o, ending at the (I, =1, I'; =0) point.

4. All x-circles pass though the (I', =1, I'; =0) point.

W N

A smith chart is a chart of r- and x-circles in the I', — I'; plane
for |I'] < 1. It can be proved that the r- and x- circles are everywhere
orthogonal to one another. The intersection of an r- and an X-circles
defines a point that represents a normalized load impedance
zi = r + jx. The actual load impedance is Z; = Ry ( r + jx ). Since a
Smith chart plots the normalized impedance, it can be used for
calculations concerning a lossless transmission line with an arbitrary
characteristic impedance.

As an illustration, point P in Fig. 1. is the intersection of the

r = 1.7 circle and the X = 0.6 circle. Hence it represents

zy = 1.7 +0.6. the point Py, at (I, =-1, I';= 0) corresponds to

r =0 and x = 0 and, therefore, represent a short-circuit. The point Py
at (I, =1, ;= 0) corresponds to an infinite impedance and represent
an open-circuit.

The Smith chart in Fig.1 marked with I, and I rectangular
coordinates. The Smith chart can be marked with polar coordinates,
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such that every point in the I' - plane is specified by a magnitude ||
and a phase angle Or. This is illustrated in Fig 2, where several
I['|-circles are shown in dotted lines and some O -angles are marked
around the |I'| = 1 circle. The [I'|-circles are normally not shown on
commercially available Smith charts: but once the point representing a
certain z; = r +jx is located, it is a simple matter to draw a circle
centered at the origin thorough the point. The fractional distance from
the center to the point ( compared with the unity radius to the edge of
the chart) is equal to the magnitude |[[] of the load reflection
coefficient; and the line to the point makes with the real axis is O,

_Ro

RLS

(142)

Each |['|-circle intersects the real axis at two points. In Fig. 2 we
designate the point on positive-real axis (OP,) as Py; and the point on
the negative-real axis (OPy) as P, . Since X =0 along the real axis, Py
and P, both represent situations with a purely resistive load, Z; = Ry
. obviously R;> Ry at Py, where r > 1 : and R; <R, at P,,, where
r<1. We found that S = R;/R, =r for R;> R, . This relation
enables us to say immediately, without using Eq.(142) that the value
of the r-circle passing through the point Py, is numerically equal to the
standing-wave ratio. Similarly, we conclude from Eq.(142) that the
value of the r-circle passing through the point P, on the negative-real
axis is numerically equal to 1/S. For the z; = 1.7+ j0.6 point, marked
P in Fig. 2, we find [I'| =1/3 and Op =28°. at Py;, r=S =2.0 these
results can be verified analytically.
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270
Figure 2

In summary, we note the following:.

1. All |I'|-circles are centered at the origin, and their radius vary
uniformly from O to 1.

2. The angle, measured from the positive real axis, of the line
drawn from the origin through the representing z; equals Or.

3. The value of the r-circle passing through the intersection of the
I['|-circle and the positive-real axis equals the standing-wave
ratio S.

So far we have based the construction of the Smith chart on the
definition of the voltage reflection coefficient of the load
impedance. The input impedance looking toward the load at a
distance z’ from the load is the ratio of V(z’) and I(z’). We have,
by writing |3 for v for a lossless line.
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Z,@)=2) 7 {M}

1(z' _ i2p
(z') 1-T'a (143)
The normalized input impedance is
/. 1+T e_”m'
Zi = = -j2p27"
Z, 1-Te (144)
1+[rle”
RN
1-|re (145)
where
¢ =0r-2pz (146)

We note that Eq.(144) relating z; and Te?*** = | ¢ is of exactly the

same form relating z; and I" = |T| ejer. In fact, the latter is a special
case of the former for z” =0 ( ¢ = Or ) . The magnitude, ||, of the
reflection coefficient and, therefore, the standing-wave ratio S, are not
changed by the additional line length z’. thus just as we can use the

Smith chart to find |I'| and 6 for a given z; at the load, e can keep
I'| constant and subtract (rotate in the clockwise direction) from Or
an angle equal to 2Pz’ =4nz’/A.

This will locate the point for |F|ej¢, which determines z; . Two
additional scales in Az’/A are usually provided along the perimeter of
the |I'| =1 circle for easy reading of the phase change 23(Az’) due to
a change in line length Az’ : the outer scale i1s marked ** wavelength
towards generator ’ in the clockwise direction (increasing z’ ) ; and
the inner scale is marked °° wavelength towards load “’ in the
counterclockwise direction (decreasing z’ ). Figure 1.03 is a typical
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Smith chart, which is commercially available. It has a complicated
appearance, but actually it consists merely of constant-r and constant-
X circles. We note that a change of half-a-wavelength in line length
(Az” = A2 ) corresponds to a 2B(Az’ ) = 2n change in ¢ . A
complete revolution around a |['|-circle returns to the same point and
results in no change in impedance.

In the following we shall illustrate the use of the Smith chart for
solving some typical transmission-line problems by several examples.

SMITH CHART APPLICATION

0.064 0.122
* > D 300 () >
I LA 1

I

=1
o
=
]
Il

= 2005 z =50 62

a)Z,,25.2¢,Z;, =7
b)Find VSWR, maximum and minimum voltage positions for both
lines.

SOLUTION :
Solution is obtained by the Analytical and Graphical methods.

1)Analytical method

Y A T ( Z,
L L — -
Z, +7Z, z,+1 Z,

2+ j1.5-1 1+ j1.5
2+ jJ1.5+1 3+ 1.5

2,=2+1jl5=T, = = 0.46+ j0.26
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Z, =23+]13

i ~i*Z0.122 048
VA—Z 1+, 1+I e _7 1+I'e 7 1+ e
2,1, °1-T, 1-Te” ™° i¥onr U1 e
1-Te *
Z =7.+030 Y,=— Y.V, 4+ z - L
B — A J B ZB C B . J200 C YC
7. -1 ele 7% eions
1_‘C =—< Zin :ZO < 4 :ZO . i0.24
ZC +1 —jl0.06ﬁ, l_r‘ce—l 24rn
1-T.e *
2)Graphical Method
Generator
;x=1,5
/ | l' 02075
(=10
03275 1
P,:Z,=1-]j13

. . 30 :
Z,=1-]13+]—=1-]0.7
B J JSO J
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P,:Zy,=1-j07>T=1, J=0.7

Yy — After taking symmetry of P, according to the origin v, could

be found on the graph
P, :Y, =0.67 + j0.47

Y. =Y, +-3-.50=0.67+ j0.72
200

P. — After taking symmetry of Y. according to the origin , P, is

found which corresponds to the impedance:

P.:Z.=0.7-j0.74
Z. =1zy.z;, =50(0.45—j0.38)Q

7,,=22.5-j19Q > real input impedance

@ Z1=20 0Ohm

Example 2
[ 12,8 cm I 5cm
Zoz=30 ohm Zo1=50 ohm
¢
[ |
0 T
i/lﬂ\ A L
Zin . Za=2 5*80=125 ohm
L)y _(3m ), ~ 0254 1.Line
A 20

L o(128em ), g 6an 2. Line
A 20
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z, =—=—=0,4Q VSWR=L=2.5 R

Zy

second line

Z, _129 4 300
90
0.644 =0.51+0,144 P, =09-j03
Z.=2,27, = Z,=81-]27Q
I, =0,165.£-100° r, = Zn = Zo
Z, +Z,
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Z, 14T, 1+\FL\e"6’Le‘2“de‘”ﬂd

m

"z, 1-T, 1-|0 |g%e e

r- plane

I
% Position of the I'. on the lossy lines
(Lowering of the modules because of

4 lossness of the line)

2N\

1 _|_‘1—* ‘e—2adej(0L—2ﬂd) .Form'ula of the normahzc?d
_ L input impedance on lossy line

in 1— ‘FL‘e—2adej(6’L—2ﬂd)

<

line

line —
I line

Numerical Application

ZLIZO . 1=2m 5 20:75Q . Zm:45+_]225Q

a)a , B=?

b)ZL2:67,5-j45Q — Zin:?
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2m

[ —
|—> Zg- Ba ™ I, = Zu=2g =—1=T, =1e”
| — Z -7,
z. = 0, = mrad
Z. ' .
7 =Zln _ 45+ 3225 0.6+ 3
Z, 75
14T, 143 e 22 2adei2d
Ziy m_— L d=1-z,forz=0

= 1 B rln - 1 . FLe—z’y(l—Z)e—z()(d e—_]ZBd

laelTg By 2022
Zin = |l 201 2Bl — | 202 (T-2P2)

=0,6+13
_I_

If the line is lossless input impedance is purely reactive.Also it could
be inductive or capacitive.This condition changes by the lenght of
line.



Graphical Solution

1_'i
# D\ L=0.15.
= P::n
(PN
tr=0
1 (1,00
Pgp | ¥=0 ‘x\ PDC E
a and f are found by using the formulas below
‘OPIH‘ _ e—2a|
' =21
oF, i
OP.
“ ml‘ — g2 _ 0,89 = 11’10—89 =0,028Np/m=« :0,25 dB
OP, B

(INp=8.69 dB),

Z, =45+ j225Q

a=0,029 ,
B=0,27n
Z,=75Q s



b)
o="?
Lin | | B:‘?

N Z,=67,5-j45Q

0,123 A

0.2\ towards generator

0,365 +0,2 =0,56514 = 0,0654
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Zin:Z().Zin:54,75+j20,25

IMPEDANCE MATCHING
£
~input —output |——
matching rmatching
Vg circuit Z£0 circuit Q]ZL

Impedance matching is one of the most important subjects of
transmission lines. If the characteristic impedance Zo of the line is
equal to the load impedance Z;, the reflection coefficient I';=0, and
the standing wave ratio is unity. When this situation exists, the
characteristic impedance of the line and the load impedance are said to
be matched, that is, they are equal. In most transmission line
applications, it is desirable to match the load impedance to the
characteristic impedance of the line in order to reduce reflections
standing waves that jeopardize the power-handling capabilities of the
line and also distort the information transmitted. Impedance matching
is also desirable in order to drive a given load most efficiently (i.e. to
deliver maximum load ), although maximum efficiency also requires
matching the generator to the line at the source end. In the presence of
sensitive components (low-noise amplifiers), impedance matching
improves the signal-to-noise ratio of the system in other cases
generally reduces amplitude and phase errors.

The equivalent circuit is shown below:
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20
% Zo ﬁ]zo

P(z=P"(1-['(z)2) = the power formula

1)I'g=0 —>  Zg=70 P+=Pmax (maximum power tranfer)
))I'=0 —*  Z;=Zo PL=P+

There are different methods of achieving impedance matching:
1-Matching using series or parallel lumped reactive elements
2-Single stub matching ( series or shunt )

3-Double stub matching
4-Triple stub matching

SINGLE STUB SERIES IMPEDANCE MATCHING:

At microwave frequencies, it is often impractical or inconvenient to
use lumped elements for impedance matching. Instead, we use a
common matching technique that uses single open or short-circuited
stubs connected either in series or in parallel. In practice, the short-
circuited stub is more commonly used for coaxial and wave-guide
applications because a short-circuited line is less-sensitive to external
influences (such as capacitive coupling and pick-up) and radiates less
than an open-circuited line segment. However, for microstrips and
striplines, open-circuited stubs are more common in practice because
they are easier to fabricate.

The principle of matching with stubs is similar to matching using
lumped reactive elements. The only difference is that the matching
impedance (Zs) is intruduced by using open or short-citcuited line

segments at appropriate length (/).
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20 d

Fln) - P 7o |]t|2|_

Zin |Zin'

main line

In the figure above we can see a short-circuited single stub series
empedance matching circuit. Here, we will find out appropriate / and

d lengths that the input empedance of the matching circuit becomes
Z0 (Zin=Z0).

As we study at normalized dimensions, following equations can be
found:

Zin= Zin = Zin/Zo and Z = ZL
Zin'= (zi + j.tanPd) / (1+ j.z;.tanpd)= 1+ Xin’

This 1s the input empedance that is observed from right side of the
stub!

Re{z;,)}=1 Im{z;,’}= Xin’
The equivalence of the matching circuit is like this:

1X

Zin’
Zin
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Zin= Zip’ TJx=1=1+)0
z,= 1+ jXin’ +jx = 1 +0
Xin” +X=0

X=-Xin’

So, chosen / and d lengths must supply these equations.

e Let’s think about pure resistive load empedance (Z;=R , z;= R=r)
If tanBd=t, then

zin’= 1+ Xin’= (r+j.t) / (14.r.t)

(1+j Xin’). (1+j.r.t) = (r+.1)

Imaginary and real parts of both sides will be equal:
- Xin’rt=r

j( Xin’+rt)=jt = Xin’=(l-r1).t
t=(1-r)/(1-1)rt = t'=tan’pd=1/r

tan°fd = (1 — cos*pd) / cos’pd = 1/r

By this equation, d can be found like this:

d = (A/4m) . arccos [(r—1) / (r +1)]

And /¢ can be found as below:
—j Xin’ =—j cotp/ = (= (\/27). Arctan (Nr /1 — 1)
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e Ifthe load empedance is not pure resistive ( zL =rL +xL ) :
Then we look at the max. points of the wave:
I'max = VSWR = (1 o ‘FL| ) / (1 + ‘FL| ) - ﬁ

So, new formulas of d and / are:

d’ = (\/4m) . arccos [(VSWR -1) / (VSWR +1)] d=d’ + dmax

(= (M2m). Arctan (WWSWR /1 — VSWR)

GRAPHICAL SOLUTIONS:

Impedance matching problems can be solved easily using the Smith
Chart. Let’s look at an antenna matching example:

e To consider stub matching it helps to have a practical example.
Here, we study a load

formed by an antenna which is being used away from its design

frequency. The method is not restricted to antenna loads.

For a 1 metre long dipole antenna at 120 MHz, the load impedance is
44.8 ohms - j 107 ohms. The normalised empedance is 0.597 - j 1.43
with respect to the 75 ohm coaxial line. We shall determine the
position and length of a series stub which will match this antenna to
the transmission line.

If we look at the SMITH Chart we find a circle of constant real
normalised impedance r=1 which goes through the open circuit point
and the centre of the chart. In our example in the next picture, this
circle is drawn in red. If you plot any arbitrary normalised impedance
on the SMITH chart, and follow round clockwise at constant radius,
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from the centre of the SMITH chart, towards the generator (along the
green line in the example), you must cross the =1 circle somewhere.
This transformation at constant radius represents motion along the
transmission line towards the generator. (One complete circuit of the
SMITH chart represents a travel of one half wavelength towards the
generator.) At this intersection point the generalised arbitrary load
impedance r + jx has transformed to (1+jx'), so, at least the real part
of the impedance equals the characteristic impedance of the line.
Matching has not yet been achieved because of the residual reactance
x' which must be tuned out with the stub. Note that x' is different from
x in general. For each transformation around the SMITH chart,
representing travel one half wavelength towards the transmitter, there
are two intersections with the r=1 circle. Stubs may be placed at either
of these points.

At the transformed (see figure —1 ) intersection point (red and green
circles) the line is cut and a pure reactance -jx' is added. This is done
by creating this reactance -jx' using a series-connected lossless stub.
Now, the total impedance looking into the sum of the line impedance
(which 1s 1+jx') and -jx' 1s therefore (1+jx') -jx' = 1 and the line is
matched.

Again, one looks at the SMITH chart and finds the outer circle where
the modulus of the reflection coefficient is unity. On this circle are the
SHORT and OPEN points, and all values of positive (top half of the
SMITH chart) and negative (bottom half of the SMITH chart)
reactance. The resistance is zero everywhere. It has to be zero, as a
lossless transmission line with load infinity ohms (open) or zero ohms
(short) has no mechanism for absorbing power. To generate a
specified reactance, start at a short circuit (or maybe an open circuit)
and follow the rim of the SMITH chart clockwise around towards the
generator until the desired reactance is obtained. Cut the stub this
number of wavelengths long.
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In our example, the SMITH chart construction to find the stub length
is shown in the next picture.

From the blue arc in the previous picture we see that the reactance at
the r=1 intersection point is +j1.86, so to cancel this out we must add a
series stub having reactance -j1.86. In the next figure we plot the blue
arc -j1.86 and, starting from the short circuit (r = x = 0) we follow the
green line around a distance of 0.328 wavelengths clockwise towards
the generator, to generate this value of reactance. If we had started
from an open circuit we would only travel a distance (0.328 - 0.250) =
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0.078 wavelengths to generate this reactance. This open circuit stub is
represented by the red arc.

The practical details of the series stub match are shown in third figure,
where we display the physical lengths in centimetres, assuming a
wave velocity on the coax (which we need to know to do this
calculation) of 2x10"8 metres per second. This data is supplied by the
cable manufacturer. The wave velocity and the frequency (120 MHz)
allows us to calculate the wavelength in metres, and thus we can
translate the "electrical lengths" from the SMITH chart into physical
lengths of line.

¢ =10.174)\ and the stub position from load will be d = 0.47A.
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THE ANALYSIS OF THE GENERAL CYLINDRICAL
TRANSMISSION LINES

We consider a cylindrical waveguide of arbitrary cross-sectional
shape. The long axis of the waveguide is along the z-direction. The
walls of the waveguide are perfect conductors, and the material within
the waveguide is characterized by €, p .

VxE =— jWyﬁ (Faraday)
VxH = (o+ jWE)E +Ju  (Ampere)
VE = g (Gauss)
VH =0 (Gauss)
E(x, Y,2)
ﬁ(x, Y,2)
V?+k*} B(X, y,z) =0 Helmholtz Equation
B(x,Y.2)

{Ju=0,p=0}

The Helmholtz equation is a seperatable linear differential
equation. So ;
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Ex(%.Y.2)
(V2 4+ k2 E, (X,Y,2) _ 0
E, (%.Y.2)
General Cylindrical Transmission System :

The equation of a wave propogating along the z- axis :

+jBz

E(X,Y,2)=E, (X, ¥, 2)+E, (X, ¥, 2) = e(x, y)e* ™™ +e, (X, y)e

H(X,Y,2)=H,(X,Y,2)+H, (X, y,2) = h(x, y)e* ™ + 1, (x, y)e* 1™

As all the EM wave components have to prove the Maxwell
Equations, we can analyse these equations for the general cylindrical
transmission lines.

Defining the transverse gradient V.,
V,=—a, +—a,
ooax t oox !
We have ;

VxE =(V, +§g)xE:(vt _ jﬁg)x(éJre_z')e—jﬁz
X

—jwp (h+h,)e ¥ (h+h)e

. . . . 102
V. xe —]pa,xe+ V xe 1pa, xe, =—jou,(h+h,)e
%,._J — — ~—

longitudinally  breadthways Vixa,e,=—a,xVe, 0
component component

Faraday’s Law :

V. xe == jou,h; (1)
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—a,xV,e;, — jfa, xe=—jouh )

Ampere’s Law :
V, xh =— jowee,
d; thhz + jﬂaz x h =—ja)ge

To analyze the general cylindrical transmission lines, first we
have to obtain e and h as the parameter of e, and h, .

e=g(e,,h)
h=f(e,h)

Second we have to solve the Helmholtz equation in V domain to
obtain e,(x,y) and h,(x,y) and finally assign all the EM components in
V domain.

If we multiply Eq-2 by — |/ a; vectorally, we obtain;

—jfla: x(-a: x V&) — j fa. x (2, x€)] = — | B~ jop)a:

~jf@:v,e.)(~a:) + j f(a:(-a.))V, e

(k* = B*)e = jou,a: xVh, — | B(V,€:)

k:a)\/ﬁ

(k* — f)h = — josa, xV e, — j S(V,h,)
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According to these equations, we can seperate EM waves
propagating along z-direction in cylindrical transmission lines into

four groups:

1) TE (transverse electric) Waves : Ez=0, Hz #0
2) TM (transverse magnetic) Waves : Hz =0, Ez #0

3) TEM (transverse electromagnetic) Waves : Hz = 0, Ez
#0=In this condition =tk

4) Hybrid= E,=0, H,=0

- jouse, <ViE, 3 KV;B,
t k,” —k> (3)

—_—

E,
(V: +(ueo” =K} —° =9 4)

z

TE waves are sometimes called H-waves and TM waves are
sometimes called E-waves, where the E-wave and H-wave notation
refers to the field that has a z-component. It is important to realize that
TE and TM modes are independent solutions, i.e., they independently
satisfy Eq (4) and the boundary conditions at the walls. (A solution
where both Ez #0 and Bz #0 would not be an additional independent
solution, but rather, if it existed it could be constructed from a
superposition of degenerate TE and TM modes.However as we shall
now see, the fields for TE and TM modes satisfy different boundary
conditions. Consequently, they will not be degenerate.)

For TM waves, the boundary condition that the tangential
component of E vanishes at the walls means that Ez vanishes at the
walls. This single BC uniquelydetermines the solution of Eq (4) for
TM waves. Therefore, it is unnecessary in the case of TM waves to
impose the other boundary condition at the walls, namely, that the
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normal component of the magnetic field (e, B in this case) vanishes

there. The lattercondition must be automatically contained in Eq (3)
for B, when it is applied to TM waves by setting Bz = 0 in the RHS of

that equation. To see this, note that the only component of v E, that is

relevant for finding the normal component of B, from Eq (3) is the
gradient of Ez with respect to the coordinate along the boundary, and
this vanishes since E, is constant there (actually, E, = 0 at the walls).
For TE waves there is no E, , so to solve Eq (4) we use the BC
that the normal component of B vanishes at the walls. The latter BC
turns out to be equivalent to the condition that the normal derivative of
B, vanishes at the walls. To see this, calculate e, -B, using Eq (3) for B,

. Noting that E, = 0 for TE waves, we find that e -B is proportional to

n-V,B,, which is identical to the normal derivative 8Bz/ &n. Thus 6Bz/

on vanishes at the walls for a TE wave. No other boundary condition
is needed to obtain a unique solution of Eq (4) for TE waves.
Therefore, the other boundary condition, namely that the tangential

—_

component of E; vanishes at the walls, must be 6 automatically

satisfied by this solution for TE waves. (This is easily shown by an
argument analogous to that given in the previous paragraph for the
case of TM waves.)

Maxwell Equations in Divergiance Form
V§=Vyﬁ=0 VH =0
(V.- jBa,)(h+h,)e " =0

Vii-jgh =0 V.h=jph,

VD=0 V.e=—jpe,

Obtaining E,(x,y) ve H,(x,y) :
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{V2+k2}H:O 2 4 K2 E_
B = VKIS0 )
D
2 2
V' =V, _182(6)
2 2

vt:ig+ia_’y vﬁ:vt.vtzé—ﬁa—z

OX oy oX~ oy

(6) = (5) we obtain;

E (X,V,2 ) )
{V2+k2}_z( y ):O N %eﬁ%eﬁ(kz—ﬁz)ezzo :
H,(X,Y,2) e

The solution of this differential equation at E,=0, gives E, (x,y).

h2 _ k2 2 L.
— - ﬂ — Characteristic value

k2 — {2] U = 1 _ C
Ug ’ ) \V Hoé &y

“h” 1s the function of the problem’s geometry and takes discrete
values. We can obtain “h” from the solution of the Helmholtz equation
for geometry of the problem. So we obtain;

B=FVk’-h’ (BeR and K*>h?}

90



For propogation of EM waves 3 must be a member R .Using

B=FVk*-h’ equation we can analyze the propogation for
different conditions of f.

1) For p=0 kekon=h . Ke =15 =h

_h  hc
27\ py& 27[\/;

If the EM wave frequency is equal to cutoff frequency , then B =
0 . So no propogation is available.

o.~h U, = fe

2)For k>h o  k>k o f<f,

3) Fork<h & <,

f=1Vk* —h = 1\/—h2(1—k—2

h2

—

B is imaginer , and causes attenuation.

Summary : General cylindrical wave guides have cut off
characteristic.
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If f=f1, cutoff
If f > f, propogation
If f<f{, attenuation

For o> o,:

0, 2 ) _| &
(U—J o ‘[ug

For o <o

2 2
@] @
Ué‘ Ué‘

RECTANGULAR WAVEGUIDES

The solution of the EM waves propagating in the +z direction in the
section o in the systems with only one conductor, the TEM mode

cannot exist.

)
Dy

.




First we must find ez and hz

TE WAVES < ¢,=0 h, #0

{(VE+RC* } hz=0 ke*=k*-p*=h’
2 2
52hz+%hz+kc2hz:o (1)
hz(x,y)= f(x) . g(y) (2)

If we put (2) into (1) and divide with f.g

2 2
1d I+ld I+kc2=0 (3)
f dx* g dy

SR

Only the function of x only the function of y

kx*—ky* + ke =0

1d°f o O

il kx’f =0 4.1
RN X 4.1
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e From (4.1) f(x,y)= A cos kx.x + A,sinkx.x
e From (4.2) g(x,y)=Bjcos ky.y + B, sin ky.y

BOUNDARY CONDITIONS

y=b

7/////////////
//////////////

v

y=0
Z
ohz
E boudary — 0
oh oh
ox i =" aya ™"

of
OX

— =—KXA sin kx.Xx+ kxA, cos A,.cos kx.x ]iig =0

(4.2)

(4.3)

(5.1)
(5.1)

(16)



A2:O
-kxA;sinkx a=0

for x=0

for x=a

kx.a=mm m=0,1 ...

a_ --B; ky.sin ky.y +B,ky cos k.y =0

X
For y=0 B, =0
(7.3)

For y=b - Biky sin ky.b=0

ky.b=nn
kyz%” n=0,1...

Thus,

h(x,y) =f(x) . g(y)

hz(x,y)= Hmn . cos m:x .COS n;zy

2 2
ke” = kx*+ky” = kmn® = (@j + (%’Zj
a

Hmn A A B,

(7.1)

(7.2)

(7.4)

(8.1)

(8.2)
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Wce=wmn =kc Ue
2 2 1/2
fe=fmn= Ve (Mj + (n—ﬂj
27 a b

There is oo TE modes and all of them have different cut off frequency.
There 1s not EM power of the waves propagating in the £z direction

which belong to
foo

f=fmn  Temn mode status Pmn=0

(9.1)
>fmn

I mn =jfmn = (kz-kzmn)”z—j{( W j —(Wm”) }

Ue Ue
27V (mzY (nz)’ .
an=j{(7j %) ‘(Tﬂ e
n=0,1...
f< fmn = I’ mn= o mn = (kmn’-k*)"” (9.3)

For TMmn hz=0, ez #0 (Vt* + kc”) ez=0 are propagation parameters

TMnn = ez (x,y) = Emn sin mTﬂX.sinnT”y

96



TMnn = hz (x,y) = Hmn cos mTﬂx.cosnT”y

Thre 1s coxoo number of TE,,, and TM,,, modes

f,<f<f,
Ue
TEIO:fl():— UE UE
2a —<f<—=
2a a

One mode frequance band
In practice the circular waveguides are mostly used in dominant mode.

In this way one mode propagation is provided.

Te 01 — TMH
T820 —> TMH

The Lowest Cut Off Frequancy is Te

TE ) — f10=¥ The Lowest Cut Off Frequency
a

Ve < f <E Allowable Operating Frequency Range

2a a
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TE( mode is the dominant mode for rectangular waveguides. (a>b)

f,= Ue —TE,, &> The lowest cut off frequency (a>b)

2a

f,0 = TE,y — second lowest cut off frequency

*In commercial waveguides (a=2b)

*In TM mode m= 0 n = 0 is not possible

The design of rectangular waveguides for a given frequency.

E<a</1e ﬁe:!
2 f

3.10° =0,3m =30cm

f=1.6 Hz= A e= 5
10

=0,3m =30cm

ISecm<a<30cm

THE WIDTHWISE EM COMPONENTS FOR TE,,, AND TM,;;,,
MODES

Ht =£VtHz = [ /kc a—hzaz +a—hzay e
K OX oy

Ug= (dB/gw)"
Et=-ip/.~ VtEz
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PROPAGATION SPECIALITIES

2 fmn )’ ; 7
'B:E\/l_(Tj —>ﬂ=¢k —kmn® =

wt-Pz=k the speed of constant phase lane

L
g
1—

Up Ue

For general rectangular waveguide the speed of waves are bigger than

the speed in space

F.n — the cutoff frequency for TE,,, or TM,,,

Up

Ug/Ue

> f/fc

1
GROUP SPEED
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Ug: 1/dB/dw:U8 \/1—(fmn/ f)2 <U e

Guided wave lenght
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2 Ae

ag="2" -
T Ji=(fmn/, f

>Ae

) e:%:}tgﬂ:br

The guided waves wave lenght decreases.

A
&

AE

v

WAVE IMPEDANCES Zyg, Ztm

e 2 3T
TEMN \/1_(1:”]”}2 /_e r
f

71V U\/l—(fmn/f )2 <n

_Et E
m Ht H

7

az
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az:The direction of EM power propagation

CALCULATION OF P, (For TE,;,;, and TM,,,))

Pmn = _[ _[ P. ds — The net power propagating in the z direction

widthwise

| (T
Pmn = Re J_' [(EtxH ¢ Jaiz dx dy

x=0 y=0

- %Re i _T[EXH 'y —Ey.H *x]dx.dy
0 O

:%Re i T[Hy.H 'y + Hx.Hx" Jdx.dy
0 0

Exmn  Eymn
Hymn Hxmn

Zwmn =

Pmn :%Re zwmn [ [IHX[ +|Hy[*)dxdy

widthwisesection

By using H, and Hy
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a b
Pmn:%ReZWmnj.ﬂyn?mzx+coﬁﬂgzm@y
0 0

a
f 2
ab n-0 m=0
) 4
a_b n=0 m=0
L2
) Et |Etf
Zwmn [Ht|" = Zwmn > =
Zwn Zwn

TOTAL EM POWER FOR TE,, or TM,;,, MODES

_ |Hmn|* ab
2.e0n.eom

Here som and son are NEUMAN FACTORS

Pmn

1 m=0
eom=
2 m>0

1 n=0
eon=
2 n>on

2 2
—Jk2 k.2 k. = (Mj +(n_”j
ﬂlO 10 10 \/ a b
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FOR Tg;0 MODE

1 aY
Pio=—wu 10 (_j ab| HIO |2
4 T

1 1

10— — ab | E max ‘2

E10

wuoa Ho
Emox:’u—
T

TE,) — Er= Eyay Total field is only in the y direction.

M=1 n=0

(DOMINANT MODE)

Emox < Edielectric distortion

From TE;; mode Ez=0  Hz#0 Ex=0 can be find

E is only at y direction and at x= a/2 tthere is maximum Ey

The electrical fields is maximum at x=a/2. In other regions the change

1s sin7t/.

y=b

0 7 /////////////
7

X N

X=Q
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. a T
Ey= -jw 1, — H,, sin — xe *
T a

.. a . - jpz
HX:JB;HIO sin gxe

7 |
Hz=H;, cos==e s
a

1 1
Po=—
4 ZTE,,

ab.E max*

Emax < Edielectric distortion happens

Emax > Edielectrik distortion doesnot happens

If system is given then Emax can be find and maximum power occurs.

THE CONDUCTIVITY LOSSES

P(z)

Po
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1

P=——[EtH tds= Z—Wj HtHt'ds  Ht—— (azxEt)
2ZW 2 W
E =7W
Ht

_P _p| — 24 Poe
0z

=20P=2(ac+ad)P

<N\

canductivity dielectric

lass loss

_PL

oC=——
2P

Rs .
P=" HEHE dI

Rs = 59% because of peffective depth there is a R surface impedance
S
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_ Rs § HtHtdl
- Zw§ Ht.Htds

ac (NP/M) conductivity loss constant

oc — It 1s the result of 1deal material

DIELECTRIC LOSSES

Eef = 8-j—d d: dielectric conductivity
w

REMEMBER

VxH =(s5d+jwe)E Jui=0

VxH =jv(e- j%) E

y=ad+jp = j Vk* —kc?

y=] W0 e ef —kc?

y=ad + jp and wpo o d << < w’poe-kc?/ and also with the use of

binomial serials.

ad =—— |5 1-| — Np/mw >>wc
2 Ve W
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The loosing factor in e %, ad is real and positif.

The relationship bteween aB/,, and Np/,, is

DB/m= 1A—010g10 e’ =8,686
JA

2aAZ

10
:E[loge ]: 20xa xLog, .

w>> WC 1¢in adzgmuo /.

There are two losses. The ac is because of material not being ideal.

The other loss becomes from cutoff frequency.

CIRCULAR WAVEGUIDE

The Circular Cylindrical Waveguide

This figure illustrates a cylindrical wave guide with a circular cross
section of radius r. In view of the cylindrical geometry involved,
cylindrical coordinates are most appropriate for the analysis to be
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carried out. Since the general properties of the modes that may exist
are similar to those for the rectangular guide.

Vip+kay =0 Helmholtz Equation

1 0o oy 1 0%y )
——r + +1k_ — =0
r@r( ér) r’ og’ (e ﬂ)w

(in the circular cylindrical coordinate)

e P y(r,4,2) = R(r) o(g)e?”

r d ( de - 1 d*®
— | r—| + hr°_ —— :
R dr dr T © dy

. J/
v vV

only function of r only function of ¢

The left-hand side is a function of r only, whereas the right-hand
side depend on ¢ only. Therefore this equation can hold for all
values of the variables only if both sides are equal to some constant
'S

d’d
dg?

+x'®=0 _ d(p) = Acoskg + Bsinxg = C cos(x + @)

For givenr, 4 and 2n7 +¢ represent same point.

For k=N n=0,1,2,...And ¢=0 .w
®(¢p) =Ccosng
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dr\ dr

J. B

1
D_s\i”
0.& o ..ir:['l

rzi(rd—RjJr(hzr2 -n*)R=0

-0.4

(The Bessel Differential Equation)

DJ, (hr) . EN (hr) _ 0
%/_/ H_/
Bessel Function Neumann Function
In order to the function goes to infinite ,it should be E=0

W(r,4,2)=DJ,(hr)cosng e . 2=k’ —h

9

Y (TE)->H,

oH, oH,
on =

equation of boundary 8[’ r=b -0
E=0 ; J.(hb)=0=pmm = qoum
TEll ’ TMOI ’ TE21 ’ TEOI/TMII

TE:
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J.(hb)=0 - J(qun)=0 — qum=hb

qnmUe _qﬂ Dc

e, = oy - 0= Ty

€

Jou(hb)=0 — J.(pam)=0 — pum=hb

pnmU S
fTMnm: 270

TE and TM cutoff frequencies are different from each other.

Order of the modes w.r.t the cutoff frequencies (from low to high)
(#m=0)

TE,,, TMy; , TE,; , TE//TMy;........ TE;,

EXAMPLE:

(a) =6 GHz, 500 kW continuous wave power 1=30 feet, choose a
traditional(commercial available) circular wave guide,

(b) Order the lowest five cutoff frequencies,

(¢) Find out the operation bandwidth for the TE; mode,

(d) Find out the loss,

(e) Find out the maximum wave for electrical field strength And
compare it with break down value for the dry air,

(f) If you insert a Teflon disk in the wave guide , in order to have
it as invisible what should its thickness be?

SOLUTION:

_qllue

(@f=6 GHz;  fo¢ = b

The operation frequency has to be higher than f.,. for the safety
margin let us choose.
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£=125x forp = forg,

t
1.25

forg, <f<ferg, = 1.25xferg << 0.9xfr

Taking

fCTE11 =5GHz - fCTE11 =

1,841xc
27b

= 2b=3,5cm=1,39"" = WC 150

We choose standard WC 150 from the table of standard circular wave

guides.

for this value(2b=1,5"") we obtain:

WC 150
Wave guide| [ Circular

= 2b=1,5"

fore, =4,614 GHz

Inside Dimensions(Inches)

Recommended

EAI Diameter Tolerance Roundness Frequency Range
Designation + or - Tolerance TE11 Mode GHz
WC 992 9,915 0,01 0,01 0,803-1,10
WC 847 8,47 0,008 0,008 0,939-1,29
WC 724 7,235 0,007 0,007 1,10-1,51
WC 618 6,181 0,006 0,006 1,29-1,76
WC 528 5,28 0,005 0,005 1,51-2,07
WC 451 4,511 0,005 0,005 1,76-2,42
WC 385 3,853 0,004 0,005 2,07-2,83
WC 329 3,292 0,003 0,003 2,42-3,31
WC 281 2,812 0,003 0,003 2,83-3,88
WC 240 2,403 0,0025 0,002 3,31-4,54
WC 205 2,047 0,002 0,002 3,89-5,33
WC 175 1,75 0,0015 0,0015 4,54-6,23
WC 150 1,5 0,0015 0,0015 5,30-7,27
WC 128 1,281 0,0013 0,0013 6,21-8,51
WC 109 1,094 0,001 0,0011 7,27-9,97
WC 94 0,938 0,0009 0,0009 8,49-11,6
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WC 80
WC 69
WC 59
WC 50

WC 44
WC 38
WC 33
WC 28

WC 25
WC 22
WC 19
wWC 17

WC 14
WC 132
wWC 11
WC 9

0,797
0,688
0,594
0,5

0,438
0,375
0,328
0,281

0,25

0,219
0,188
0,172

0,141
0,125
0,109

0,0008
0,0007
0,0006
0,0005

0,00045
0,00038
0,00033
0,00028

0,00025
0,00025
0,00025
0,00025

0,00025
0,00025
0,00025

0,094

0,00025

0,0008
0,0007
0,0006
0,0005

0,0004
0,0004
0,0003
0,0001

0,0001
0,0001
0,00007
0,00007

0,00005
0,00005
0,00005

0,00005

9,97-13,7
11,6-15,9
13,4-18,4
15,9-21,8

18,2-24,9
21,2-29,1
24,3-33,2
28,3-38,8

31,8-43,6
36,4-49,8
42,4-58,1
46,3-63,5

56,6-77,5
63,5-87,2
72,7-99,7

84,8-116

( b) The lowest five cutoff frequencies the WC 150

Mode:

f.(GHz):

TE

4.614

(c) The operation bandwidth,

TMy, TE,,
6.028 7.654
1.15xf,_ <f < 0.95xf,

TEy/TMy,

9.604

TM01 .
— E lines

---- H_ lines
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TMy, is not generally used for the second order mode,
since this configuration does occur rarely in practice.

TEII:
— E_lines
PP,
74
/
7
V7
7
Y.
| TEZI:
— E_lines

n: the order of the Bessel function, m: the order of the zeros
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8.686

(X‘C TEnm - f 2
oo bl [1- (ch

For the 30°” propagation distance of ‘Al’ waveguide the loss
power= 0.68 dB

outputpower
inputpower

~%85.4 ) PLOSS:72-6 kW

If the operation frequency f increases, the variations o, as dB/m
are given below:

o [dB/m ]

Thi

TE

TE
01

For the atmosphere pressure, the circular wave guide with the dry air
insulator, the maximum pulsive power can be

f 2
0 Ll s
e, = 2.7(2B) f

e, =388 MW

P

max

max

Epax= 1 355 X29KV =10405 W/cm
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